On leap Zagreb indices of graphs
Authors
Abstract:
The first and second Zagreb indices of a graph are equal, respectively, to the sum of squares of the vertex degrees, and the sum of the products of the degrees of pairs of adjacent vertices. We now consider analogous graph invariants, based on the second degrees of vertices (number of their second neighbors), called leap Zagreb indices. A number of their basic properties is established.
similar resources
Leap Zagreb indices of trees and unicyclic graphs
By d(v|G) and d_2(v|G) are denoted the number of first and second neighborsof the vertex v of the graph G. The first, second, and third leap Zagreb indicesof G are defined asLM_1(G) = sum_{v in V(G)} d_2(v|G)^2, LM_2(G) = sum_{uv in E(G)} d_2(u|G) d_2(v|G),and LM_3(G) = sum_{v in V(G)} d(v|G) d_2(v|G), respectively. In this paper, we generalizethe results of Naji et al. [Commun. Combin. Optim. ...
full textOn multiplicative Zagreb indices of graphs
Todeschini et al. have recently suggested to consider multiplicative variants of additive graph invariants, which applied to the Zagreb indices would lead to the multiplicative Zagreb indices of a graph G, denoted by ( ) 1 G and ( ) 2 G , under the name first and second multiplicative Zagreb index, respectively. These are define as ( ) 2 1 ( ) ( ) v V G G G d v and ( ) ( ) ( ) ( ) 2...
full textOn Comparing Zagreb Indices of Graphs
For a (molecular) graph, the first Zagreb index M1 is equal to the sum of the squares of the degrees of the vertices, and the second Zagreb index M2 is equal to the sum of the products of the degrees of pairs of adjacent vertices. It is well known that for connected or disconnected graphs with n vertices and m edges, the inequality M2/m ≥ M1/n does not always hold. Here we show that this relati...
full textZagreb, multiplicative Zagreb Indices and Coindices of graphs
Let G=(V,E) be a simple connected graph with vertex set V and edge set E. The first, second and third Zagreb indices of G are respectivly defined by: $M_1(G)=sum_{uin V} d(u)^2, hspace {.1 cm} M_2(G)=sum_{uvin E} d(u).d(v)$ and $ M_3(G)=sum_{uvin E}| d(u)-d(v)| $ , where d(u) is the degree of vertex u in G and uv is an edge of G connecting the vertices u and v. Recently, the first and second m...
full texton multiplicative zagreb indices of graphs
todeschini et al. have recently suggested to consider multiplicative variants of additive graphinvariants, which applied to the zagreb indices would lead to the multiplicative zagrebindices of a graph g, denoted by ( ) 1 g and ( ) 2 g , under the name first and secondmultiplicative zagreb index, respectively. these are define as ( )21 ( ) ( )v v gg g d vand ( ) ( ) ( )( )2 g d v d v gu...
full textCertain General Zagreb Indices and Zagreb Polynomials of Molecular Graphs
Chemical compounds and drugs are often modelled as graphs where each vertex represents an atom of molecule, and covalent bounds between atoms are represented by edges between the corresponding vertices. This graph derived from a chemical compounds is often called its molecular graph, and can be different structures. In this paper, by virtue of mathematical derivation, we determine the fourth, f...
full textMy Resources
Journal title
volume 2 issue 2
pages 99- 117
publication date 2017-09-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023